\(\int \frac {(a+a \sin (e+f x))^2}{(c-c \sin (e+f x))^4} \, dx\) [244]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [C] (verified)
   Fricas [B] (verification not implemented)
   Sympy [B] (verification not implemented)
   Maxima [B] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 26, antiderivative size = 67 \[ \int \frac {(a+a \sin (e+f x))^2}{(c-c \sin (e+f x))^4} \, dx=\frac {a^2 c^2 \cos ^5(e+f x)}{7 f (c-c \sin (e+f x))^6}+\frac {a^2 c \cos ^5(e+f x)}{35 f (c-c \sin (e+f x))^5} \]

[Out]

1/7*a^2*c^2*cos(f*x+e)^5/f/(c-c*sin(f*x+e))^6+1/35*a^2*c*cos(f*x+e)^5/f/(c-c*sin(f*x+e))^5

Rubi [A] (verified)

Time = 0.09 (sec) , antiderivative size = 67, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.115, Rules used = {2815, 2751, 2750} \[ \int \frac {(a+a \sin (e+f x))^2}{(c-c \sin (e+f x))^4} \, dx=\frac {a^2 c^2 \cos ^5(e+f x)}{7 f (c-c \sin (e+f x))^6}+\frac {a^2 c \cos ^5(e+f x)}{35 f (c-c \sin (e+f x))^5} \]

[In]

Int[(a + a*Sin[e + f*x])^2/(c - c*Sin[e + f*x])^4,x]

[Out]

(a^2*c^2*Cos[e + f*x]^5)/(7*f*(c - c*Sin[e + f*x])^6) + (a^2*c*Cos[e + f*x]^5)/(35*f*(c - c*Sin[e + f*x])^5)

Rule 2750

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[b*(g*C
os[e + f*x])^(p + 1)*((a + b*Sin[e + f*x])^m/(a*f*g*m)), x] /; FreeQ[{a, b, e, f, g, m, p}, x] && EqQ[a^2 - b^
2, 0] && EqQ[Simplify[m + p + 1], 0] &&  !ILtQ[p, 0]

Rule 2751

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[b*(g*C
os[e + f*x])^(p + 1)*((a + b*Sin[e + f*x])^m/(a*f*g*Simplify[2*m + p + 1])), x] + Dist[Simplify[m + p + 1]/(a*
Simplify[2*m + p + 1]), Int[(g*Cos[e + f*x])^p*(a + b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{a, b, e, f, g, m
, p}, x] && EqQ[a^2 - b^2, 0] && ILtQ[Simplify[m + p + 1], 0] && NeQ[2*m + p + 1, 0] &&  !IGtQ[m, 0]

Rule 2815

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Di
st[a^m*c^m, Int[Cos[e + f*x]^(2*m)*(c + d*Sin[e + f*x])^(n - m), x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] &&
EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && IntegerQ[m] &&  !(IntegerQ[n] && ((LtQ[m, 0] && GtQ[n, 0]) || LtQ[0,
 n, m] || LtQ[m, n, 0]))

Rubi steps \begin{align*} \text {integral}& = \left (a^2 c^2\right ) \int \frac {\cos ^4(e+f x)}{(c-c \sin (e+f x))^6} \, dx \\ & = \frac {a^2 c^2 \cos ^5(e+f x)}{7 f (c-c \sin (e+f x))^6}+\frac {1}{7} \left (a^2 c\right ) \int \frac {\cos ^4(e+f x)}{(c-c \sin (e+f x))^5} \, dx \\ & = \frac {a^2 c^2 \cos ^5(e+f x)}{7 f (c-c \sin (e+f x))^6}+\frac {a^2 c \cos ^5(e+f x)}{35 f (c-c \sin (e+f x))^5} \\ \end{align*}

Mathematica [A] (verified)

Time = 1.93 (sec) , antiderivative size = 117, normalized size of antiderivative = 1.75 \[ \int \frac {(a+a \sin (e+f x))^2}{(c-c \sin (e+f x))^4} \, dx=-\frac {a^2 \left (\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right ) \left (-35 \cos \left (\frac {1}{2} (e+f x)\right )+14 \cos \left (\frac {3}{2} (e+f x)\right )+\cos \left (\frac {7}{2} (e+f x)\right )-70 \sin \left (\frac {1}{2} (e+f x)\right )-35 \sin \left (\frac {3}{2} (e+f x)\right )+7 \sin \left (\frac {5}{2} (e+f x)\right )\right )}{140 c^4 f (-1+\sin (e+f x))^4} \]

[In]

Integrate[(a + a*Sin[e + f*x])^2/(c - c*Sin[e + f*x])^4,x]

[Out]

-1/140*(a^2*(Cos[(e + f*x)/2] - Sin[(e + f*x)/2])*(-35*Cos[(e + f*x)/2] + 14*Cos[(3*(e + f*x))/2] + Cos[(7*(e
+ f*x))/2] - 70*Sin[(e + f*x)/2] - 35*Sin[(3*(e + f*x))/2] + 7*Sin[(5*(e + f*x))/2]))/(c^4*f*(-1 + Sin[e + f*x
])^4)

Maple [C] (verified)

Result contains complex when optimal does not.

Time = 0.86 (sec) , antiderivative size = 87, normalized size of antiderivative = 1.30

method result size
risch \(-\frac {2 i a^{2} \left (35 i {\mathrm e}^{4 i \left (f x +e \right )}+35 \,{\mathrm e}^{5 i \left (f x +e \right )}-14 i {\mathrm e}^{2 i \left (f x +e \right )}-70 \,{\mathrm e}^{3 i \left (f x +e \right )}-i+7 \,{\mathrm e}^{i \left (f x +e \right )}\right )}{35 f \,c^{4} \left ({\mathrm e}^{i \left (f x +e \right )}-i\right )^{7}}\) \(87\)
parallelrisch \(-\frac {2 a^{2} \left (35 \left (\tan ^{6}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )-35 \left (\tan ^{5}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )+140 \left (\tan ^{4}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )-70 \left (\tan ^{3}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )+91 \left (\tan ^{2}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )-7 \tan \left (\frac {f x}{2}+\frac {e}{2}\right )+6\right )}{35 f \,c^{4} \left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )-1\right )^{7}}\) \(103\)
derivativedivides \(\frac {2 a^{2} \left (-\frac {128}{5 \left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )-1\right )^{5}}-\frac {5}{\left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )-1\right )^{2}}-\frac {1}{\tan \left (\frac {f x}{2}+\frac {e}{2}\right )-1}-\frac {16}{\left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )-1\right )^{6}}-\frac {14}{\left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )-1\right )^{3}}-\frac {32}{7 \left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )-1\right )^{7}}-\frac {24}{\left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )-1\right )^{4}}\right )}{f \,c^{4}}\) \(118\)
default \(\frac {2 a^{2} \left (-\frac {128}{5 \left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )-1\right )^{5}}-\frac {5}{\left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )-1\right )^{2}}-\frac {1}{\tan \left (\frac {f x}{2}+\frac {e}{2}\right )-1}-\frac {16}{\left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )-1\right )^{6}}-\frac {14}{\left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )-1\right )^{3}}-\frac {32}{7 \left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )-1\right )^{7}}-\frac {24}{\left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )-1\right )^{4}}\right )}{f \,c^{4}}\) \(118\)
norman \(\frac {\frac {2 a^{2} \left (\tan ^{9}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{c f}-\frac {12 a^{2}}{35 c f}-\frac {2 a^{2} \left (\tan ^{10}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{c f}+\frac {2 a^{2} \tan \left (\frac {f x}{2}+\frac {e}{2}\right )}{5 c f}+\frac {8 a^{2} \left (\tan ^{7}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{c f}-\frac {12 a^{2} \left (\tan ^{8}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{c f}+\frac {24 a^{2} \left (\tan ^{3}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{5 c f}+\frac {52 a^{2} \left (\tan ^{5}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{5 c f}-\frac {116 a^{2} \left (\tan ^{6}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{5 c f}-\frac {206 a^{2} \left (\tan ^{2}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{35 c f}-\frac {656 a^{2} \left (\tan ^{4}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{35 c f}}{\left (1+\tan ^{2}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )^{2} c^{3} \left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )-1\right )^{7}}\) \(263\)

[In]

int((a+a*sin(f*x+e))^2/(c-c*sin(f*x+e))^4,x,method=_RETURNVERBOSE)

[Out]

-2/35*I*a^2*(35*I*exp(4*I*(f*x+e))+35*exp(5*I*(f*x+e))-14*I*exp(2*I*(f*x+e))-70*exp(3*I*(f*x+e))-I+7*exp(I*(f*
x+e)))/f/c^4/(exp(I*(f*x+e))-I)^7

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 222 vs. \(2 (65) = 130\).

Time = 0.25 (sec) , antiderivative size = 222, normalized size of antiderivative = 3.31 \[ \int \frac {(a+a \sin (e+f x))^2}{(c-c \sin (e+f x))^4} \, dx=-\frac {a^{2} \cos \left (f x + e\right )^{4} + 4 \, a^{2} \cos \left (f x + e\right )^{3} + 13 \, a^{2} \cos \left (f x + e\right )^{2} - 10 \, a^{2} \cos \left (f x + e\right ) - 20 \, a^{2} - {\left (a^{2} \cos \left (f x + e\right )^{3} - 3 \, a^{2} \cos \left (f x + e\right )^{2} + 10 \, a^{2} \cos \left (f x + e\right ) + 20 \, a^{2}\right )} \sin \left (f x + e\right )}{35 \, {\left (c^{4} f \cos \left (f x + e\right )^{4} - 3 \, c^{4} f \cos \left (f x + e\right )^{3} - 8 \, c^{4} f \cos \left (f x + e\right )^{2} + 4 \, c^{4} f \cos \left (f x + e\right ) + 8 \, c^{4} f + {\left (c^{4} f \cos \left (f x + e\right )^{3} + 4 \, c^{4} f \cos \left (f x + e\right )^{2} - 4 \, c^{4} f \cos \left (f x + e\right ) - 8 \, c^{4} f\right )} \sin \left (f x + e\right )\right )}} \]

[In]

integrate((a+a*sin(f*x+e))^2/(c-c*sin(f*x+e))^4,x, algorithm="fricas")

[Out]

-1/35*(a^2*cos(f*x + e)^4 + 4*a^2*cos(f*x + e)^3 + 13*a^2*cos(f*x + e)^2 - 10*a^2*cos(f*x + e) - 20*a^2 - (a^2
*cos(f*x + e)^3 - 3*a^2*cos(f*x + e)^2 + 10*a^2*cos(f*x + e) + 20*a^2)*sin(f*x + e))/(c^4*f*cos(f*x + e)^4 - 3
*c^4*f*cos(f*x + e)^3 - 8*c^4*f*cos(f*x + e)^2 + 4*c^4*f*cos(f*x + e) + 8*c^4*f + (c^4*f*cos(f*x + e)^3 + 4*c^
4*f*cos(f*x + e)^2 - 4*c^4*f*cos(f*x + e) - 8*c^4*f)*sin(f*x + e))

Sympy [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1074 vs. \(2 (58) = 116\).

Time = 8.63 (sec) , antiderivative size = 1074, normalized size of antiderivative = 16.03 \[ \int \frac {(a+a \sin (e+f x))^2}{(c-c \sin (e+f x))^4} \, dx=\text {Too large to display} \]

[In]

integrate((a+a*sin(f*x+e))**2/(c-c*sin(f*x+e))**4,x)

[Out]

Piecewise((-70*a**2*tan(e/2 + f*x/2)**6/(35*c**4*f*tan(e/2 + f*x/2)**7 - 245*c**4*f*tan(e/2 + f*x/2)**6 + 735*
c**4*f*tan(e/2 + f*x/2)**5 - 1225*c**4*f*tan(e/2 + f*x/2)**4 + 1225*c**4*f*tan(e/2 + f*x/2)**3 - 735*c**4*f*ta
n(e/2 + f*x/2)**2 + 245*c**4*f*tan(e/2 + f*x/2) - 35*c**4*f) + 70*a**2*tan(e/2 + f*x/2)**5/(35*c**4*f*tan(e/2
+ f*x/2)**7 - 245*c**4*f*tan(e/2 + f*x/2)**6 + 735*c**4*f*tan(e/2 + f*x/2)**5 - 1225*c**4*f*tan(e/2 + f*x/2)**
4 + 1225*c**4*f*tan(e/2 + f*x/2)**3 - 735*c**4*f*tan(e/2 + f*x/2)**2 + 245*c**4*f*tan(e/2 + f*x/2) - 35*c**4*f
) - 280*a**2*tan(e/2 + f*x/2)**4/(35*c**4*f*tan(e/2 + f*x/2)**7 - 245*c**4*f*tan(e/2 + f*x/2)**6 + 735*c**4*f*
tan(e/2 + f*x/2)**5 - 1225*c**4*f*tan(e/2 + f*x/2)**4 + 1225*c**4*f*tan(e/2 + f*x/2)**3 - 735*c**4*f*tan(e/2 +
 f*x/2)**2 + 245*c**4*f*tan(e/2 + f*x/2) - 35*c**4*f) + 140*a**2*tan(e/2 + f*x/2)**3/(35*c**4*f*tan(e/2 + f*x/
2)**7 - 245*c**4*f*tan(e/2 + f*x/2)**6 + 735*c**4*f*tan(e/2 + f*x/2)**5 - 1225*c**4*f*tan(e/2 + f*x/2)**4 + 12
25*c**4*f*tan(e/2 + f*x/2)**3 - 735*c**4*f*tan(e/2 + f*x/2)**2 + 245*c**4*f*tan(e/2 + f*x/2) - 35*c**4*f) - 18
2*a**2*tan(e/2 + f*x/2)**2/(35*c**4*f*tan(e/2 + f*x/2)**7 - 245*c**4*f*tan(e/2 + f*x/2)**6 + 735*c**4*f*tan(e/
2 + f*x/2)**5 - 1225*c**4*f*tan(e/2 + f*x/2)**4 + 1225*c**4*f*tan(e/2 + f*x/2)**3 - 735*c**4*f*tan(e/2 + f*x/2
)**2 + 245*c**4*f*tan(e/2 + f*x/2) - 35*c**4*f) + 14*a**2*tan(e/2 + f*x/2)/(35*c**4*f*tan(e/2 + f*x/2)**7 - 24
5*c**4*f*tan(e/2 + f*x/2)**6 + 735*c**4*f*tan(e/2 + f*x/2)**5 - 1225*c**4*f*tan(e/2 + f*x/2)**4 + 1225*c**4*f*
tan(e/2 + f*x/2)**3 - 735*c**4*f*tan(e/2 + f*x/2)**2 + 245*c**4*f*tan(e/2 + f*x/2) - 35*c**4*f) - 12*a**2/(35*
c**4*f*tan(e/2 + f*x/2)**7 - 245*c**4*f*tan(e/2 + f*x/2)**6 + 735*c**4*f*tan(e/2 + f*x/2)**5 - 1225*c**4*f*tan
(e/2 + f*x/2)**4 + 1225*c**4*f*tan(e/2 + f*x/2)**3 - 735*c**4*f*tan(e/2 + f*x/2)**2 + 245*c**4*f*tan(e/2 + f*x
/2) - 35*c**4*f), Ne(f, 0)), (x*(a*sin(e) + a)**2/(-c*sin(e) + c)**4, True))

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 816 vs. \(2 (65) = 130\).

Time = 0.22 (sec) , antiderivative size = 816, normalized size of antiderivative = 12.18 \[ \int \frac {(a+a \sin (e+f x))^2}{(c-c \sin (e+f x))^4} \, dx=\text {Too large to display} \]

[In]

integrate((a+a*sin(f*x+e))^2/(c-c*sin(f*x+e))^4,x, algorithm="maxima")

[Out]

2/105*(2*a^2*(91*sin(f*x + e)/(cos(f*x + e) + 1) - 168*sin(f*x + e)^2/(cos(f*x + e) + 1)^2 + 280*sin(f*x + e)^
3/(cos(f*x + e) + 1)^3 - 175*sin(f*x + e)^4/(cos(f*x + e) + 1)^4 + 105*sin(f*x + e)^5/(cos(f*x + e) + 1)^5 - 1
3)/(c^4 - 7*c^4*sin(f*x + e)/(cos(f*x + e) + 1) + 21*c^4*sin(f*x + e)^2/(cos(f*x + e) + 1)^2 - 35*c^4*sin(f*x
+ e)^3/(cos(f*x + e) + 1)^3 + 35*c^4*sin(f*x + e)^4/(cos(f*x + e) + 1)^4 - 21*c^4*sin(f*x + e)^5/(cos(f*x + e)
 + 1)^5 + 7*c^4*sin(f*x + e)^6/(cos(f*x + e) + 1)^6 - c^4*sin(f*x + e)^7/(cos(f*x + e) + 1)^7) - 3*a^2*(49*sin
(f*x + e)/(cos(f*x + e) + 1) - 147*sin(f*x + e)^2/(cos(f*x + e) + 1)^2 + 210*sin(f*x + e)^3/(cos(f*x + e) + 1)
^3 - 210*sin(f*x + e)^4/(cos(f*x + e) + 1)^4 + 105*sin(f*x + e)^5/(cos(f*x + e) + 1)^5 - 35*sin(f*x + e)^6/(co
s(f*x + e) + 1)^6 - 12)/(c^4 - 7*c^4*sin(f*x + e)/(cos(f*x + e) + 1) + 21*c^4*sin(f*x + e)^2/(cos(f*x + e) + 1
)^2 - 35*c^4*sin(f*x + e)^3/(cos(f*x + e) + 1)^3 + 35*c^4*sin(f*x + e)^4/(cos(f*x + e) + 1)^4 - 21*c^4*sin(f*x
 + e)^5/(cos(f*x + e) + 1)^5 + 7*c^4*sin(f*x + e)^6/(cos(f*x + e) + 1)^6 - c^4*sin(f*x + e)^7/(cos(f*x + e) +
1)^7) - 4*a^2*(14*sin(f*x + e)/(cos(f*x + e) + 1) - 42*sin(f*x + e)^2/(cos(f*x + e) + 1)^2 + 35*sin(f*x + e)^3
/(cos(f*x + e) + 1)^3 - 35*sin(f*x + e)^4/(cos(f*x + e) + 1)^4 - 2)/(c^4 - 7*c^4*sin(f*x + e)/(cos(f*x + e) +
1) + 21*c^4*sin(f*x + e)^2/(cos(f*x + e) + 1)^2 - 35*c^4*sin(f*x + e)^3/(cos(f*x + e) + 1)^3 + 35*c^4*sin(f*x
+ e)^4/(cos(f*x + e) + 1)^4 - 21*c^4*sin(f*x + e)^5/(cos(f*x + e) + 1)^5 + 7*c^4*sin(f*x + e)^6/(cos(f*x + e)
+ 1)^6 - c^4*sin(f*x + e)^7/(cos(f*x + e) + 1)^7))/f

Giac [A] (verification not implemented)

none

Time = 0.32 (sec) , antiderivative size = 121, normalized size of antiderivative = 1.81 \[ \int \frac {(a+a \sin (e+f x))^2}{(c-c \sin (e+f x))^4} \, dx=-\frac {2 \, {\left (35 \, a^{2} \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{6} - 35 \, a^{2} \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{5} + 140 \, a^{2} \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{4} - 70 \, a^{2} \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{3} + 91 \, a^{2} \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} - 7 \, a^{2} \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right ) + 6 \, a^{2}\right )}}{35 \, c^{4} f {\left (\tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right ) - 1\right )}^{7}} \]

[In]

integrate((a+a*sin(f*x+e))^2/(c-c*sin(f*x+e))^4,x, algorithm="giac")

[Out]

-2/35*(35*a^2*tan(1/2*f*x + 1/2*e)^6 - 35*a^2*tan(1/2*f*x + 1/2*e)^5 + 140*a^2*tan(1/2*f*x + 1/2*e)^4 - 70*a^2
*tan(1/2*f*x + 1/2*e)^3 + 91*a^2*tan(1/2*f*x + 1/2*e)^2 - 7*a^2*tan(1/2*f*x + 1/2*e) + 6*a^2)/(c^4*f*(tan(1/2*
f*x + 1/2*e) - 1)^7)

Mupad [B] (verification not implemented)

Time = 7.20 (sec) , antiderivative size = 99, normalized size of antiderivative = 1.48 \[ \int \frac {(a+a \sin (e+f x))^2}{(c-c \sin (e+f x))^4} \, dx=\frac {\sqrt {2}\,a^2\,\cos \left (\frac {e}{2}+\frac {f\,x}{2}\right )\,\left (\frac {5\,\cos \left (3\,e+3\,f\,x\right )}{8}-\frac {105\,\sin \left (e+f\,x\right )}{8}-\frac {27\,\cos \left (2\,e+2\,f\,x\right )}{4}-\frac {121\,\cos \left (e+f\,x\right )}{8}+\frac {7\,\sin \left (2\,e+2\,f\,x\right )}{2}+\frac {7\,\sin \left (3\,e+3\,f\,x\right )}{8}+\frac {109}{4}\right )}{280\,c^4\,f\,{\cos \left (\frac {e}{2}+\frac {\pi }{4}+\frac {f\,x}{2}\right )}^7} \]

[In]

int((a + a*sin(e + f*x))^2/(c - c*sin(e + f*x))^4,x)

[Out]

(2^(1/2)*a^2*cos(e/2 + (f*x)/2)*((5*cos(3*e + 3*f*x))/8 - (105*sin(e + f*x))/8 - (27*cos(2*e + 2*f*x))/4 - (12
1*cos(e + f*x))/8 + (7*sin(2*e + 2*f*x))/2 + (7*sin(3*e + 3*f*x))/8 + 109/4))/(280*c^4*f*cos(e/2 + pi/4 + (f*x
)/2)^7)